Abstract

Point defect modes in a 2D phononic crystal with giant magnetostrictive material tuned by a magnetic field and compressive stress are investigated theoretically in this study. The 3D magnetostrictive constitutive model proposed by Liu and Zheng (2005 Acta Mech. Sin. 21 278–85) is adopted to develop effective elastic, piezomagnetic, and magnetic permeability constants. The finite element method, in combination with a supercell technique, is then applied to obtain the band structures and transmission spectra of the point defect modes in a 2D phononic crystal composed of Terfenol-D rods of circular cross section embedded in a polymethyl methacrylate matrix with a square lattice. The magnetic field not only enlarges the first band gap (FBG) but also opens up a new band gap of XY modes. New point defect modes are simultaneously trapped in the band gaps. The width of the FBG and the frequencies of the point defects of the Z mode decrease as the magnetic field increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.