Abstract

Compared with the traditional finite-difference time-domain (FDTD) method, the symplectic finite-difference time-domain (SFDTD) method has the characteristics of high precision and low dispersion. However, because the higher-order difference is necessary for the calculation, a large sparse matrix is generated. It causes that the computational time is relatively long and the memory is more. To solve this problem, the incomplete Cholesky conjugate gradient (ICCG) method for solving the large sparse matrix needs to be taken into the SFDTD differential equations. The ICCG method can accelerate the iterations of the numerical calculation and reduce the memory with fast and stable convergence speed. The new ICCG–SFDTD method, which has both the advantages of the ICCG method and SFDTD method, is proposed. In this paper, the ICCG–SFDTD method is used for research on the characteristic parameters of the plasma photonic crystals (PPCs) under different conditions, such as the reflection electric field and the transmission coefficient, to verify the feasibility and accuracy of this method. The results prove that the ICCG–SFDTD method is accurate and has some advantages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call