Abstract

Triazolyl glycolipid derivatives constructed via CuI-catalyzed azide-alkyne 1,3-dipolar cycloaddition reaction (Cue-AAC) represent a new range of carbohydrate-based scaffolds for use in many fields of the chemical research. Here the surface adsorptive ability of series of our previously prepared C1- or C6-triazole linked gluco- and galactolipid derivatives for mild steel in 1M HCl was studied via electrochemical impedance spectroscopy (EIS). Results indicated that these monosaccharide–fatty acid conjugates are weak inhibitors against HCl corrosion for mild steel. Moreover, some newly synthesized triazolyl disaccharide (maltose)–fatty alcohol conjugates failed to display enhanced activity, meaning that the structural enlargement of the sugar moiety does not favor the iron surface adsorption. However, a bis-triazolyl glycolipid derivative, which was realized by introducing a benzenesulfonamide group via Cue-AAC to the C6-position of a C1-triazolyl glucolipid analog, eventually showed significantly improved adsorptive potency compared to that of its former counterparts. The corrosion inhibitive modality of this compound for mild steel in HCl was subsequently studied via potentiodynamic polarization and thermodynamic calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call