Abstract

AbstractHigher demand for the load‐bearing ability of supporting foundations is required if its upper wind turbine is substituted by a larger one. Presently, there is a lack of strengthening and retrofitting methods for existing wind turbine foundations. A combined‐connection retrofitting method by adding anchor bolts to the existing wind turbine foundation with embedded‐ring is prompted in this study. Furthermore, a strengthening measure by adding a stiffening beam, expanding the foundation plate, and adding rock bolts to increase the ability to resist basal bending moment is proposed. Finite element analysis is conducted to analyze the effectiveness of the proposed strengthening and retrofitting methods for a 2 MW wind turbine foundation. The result shows that the peak stress of embedded‐ring is decreased by 36% by using the internal combined‐connection, and the peak tensile stress of concrete is reduced by 4.0%. When the external combined‐connection is adopted, the peak stress of the embedded‐ring is reduced by 69.3%, and the peak tensile stress of the concrete is reduced by 26.0%. It illustrates that the external combined‐connection method is more effective to increase the load‐bearing capability of the connection than the internal combined‐connection method. Additionally, the proposed strengthening measure by adding a stiffening beam, expanding the foundation plate, and adding rock bolts is effective to decrease the responses of foundation. The maximum tensile stress of concrete, the maximum compressive stress of concrete, and the maximum stress of the embedded‐ring are reduced by 19.8%, 31.3%, and 22.2%, respectively. To summarize, the proposed strengthening and retrofitting methods are capable of ensuring the safety and stability of higher‐power wind turbine operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call