Abstract

Aiming at the problem of body instability caused by actuator failure in a distributed electric vehicle drive system, a fault-tolerant control strategy of longitudinal and lateral force cooperative reconstruction with active steering control was proposed, and a layered control structure was adopted based on the vehicle model. In the upper controller, the resultant force and torque are calculated according to the vehicle parameter state and MPC algorithm; the lower controller is the cooperative reconfiguration allocation layer, and the minimum tire load rate, longitudinal and lateral force constraints and front wheel angle control are considered. Finally, offline simulation experiments and hardware-in-the-loop experiments are completed to verify the effectiveness and real-time performance of the designed strategy. The results show that the designed strategy can significantly improve the driving stability and safety of the vehicle when the actuator fails.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call