Abstract

Accurate prediction of PM2.5 concentration is one of the key tasks of air pollution assessment, early warning, and treatment. In this paper, four monitoring sites were arranged in Jiangbei New District of Nanjing City, China. The environmental parameters such as PM2.5/PM10 concentration, temperature, and humidity were monitored from January to February 2020. A gated recurrent unit (GRU) network based on the PM2.5 concentration prediction model was established to predict PM2.5 concentration. The mean relative error (MRE), root mean square error (RMSE), and Pearson correlation coefficient were selected as the evaluation criteria for the accuracy of the GRU model. The data set was divided into a training set, a test set and a validation set at a ratio of 7:2:1, and the GRU model was used to predict the hourly value of PM2.5 concentration in the next week. The prediction results show that the Pearson correlation coefficients between the predicted values and the monitored values of the four monitoring sites have reached more than 0.9, reflecting a strong correlation. The relative average errors are around 10%. The GRU model prediction of NJAU (Nanjing Agricultural University)-Pukou Campus Site is the most accurate, and the correlation coefficient, MRE, and RMSE are 0.970, 7.85%, and 9.6049, respectively, reflecting the good prediction performance of the model. Therefore, this research supports the prediction of air quality in different cities and regions, so people can take protective measures in advance and reduce the damage caused by air pollution to human bodies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call