Abstract

Agriculture has the dual effects of serving as a carbon source and uptaking carbon. Studying the carbon effects of agriculture has great theoretical and practical importance. Based on China’s provincial panel data from 2007 to 2020, using the life cycle method, this paper studied the carbon effects of farmland in China from the perspective of carbon sources and uptake. The spatiotemporal distribution characteristics of carbon effects were analysed, and the carbon-emission reduction potential was calculated. The results displayed that the carbon emissions from farmland in China had a fluctuating downwards trend from 2007 to 2020, with the highest carbon emissions in 2013. The carbon-emission intensity generally displayed a downwards trend, exhibiting a “cold north and hot south” spatial pattern. Furthermore, carbon uptake displayed an overall upwards trend during the study period, increasing by 27.73% compared to that in 2007. Rice, maize, and wheat were the main sources of carbon uptake, and high-carbon-uptake areas were mainly distributed in eastern China; conversely, low-carbon-uptake areas were mainly distributed in southwestern China. Chinese farmland mainly served as net carbon-uptake areas, increasing from 522.81 × 106 t in 2007 to 734.50 × 106 t in 2020. Notably, there were significant differences in net carbon uptake among 31 provinces in China, with a prominent polarization phenomenon. China has great potential for reducing carbon emissions from farmland. Finally, based on the results of clustering carbon-emissions reduction potential, differentiated agricultural management strategies were developed to provide a reference and solutions for decision making related to agricultural “dual-carbon” strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call