Abstract

<div>At present, it is generally considered in the analysis of the secondary motion of engine piston that the piston skirt–cylinder liner friction pair is fully lubricated in an engine operating cycle. However, in practice, when the piston moves upward, the amount of lubricating oil at the inlet may not ensure that the friction pair is fully lubricated. In this article, the secondary motion of piston is studied when the transport of lubricating oil is considered to determine the lubrication condition of piston skirt–cylinder liner friction pair. The secondary motion of piston is solved based on the combined piston motion model, hydrodynamic lubrication model, asperity contact model, and lubricating oil flow model. The secondary motion equation of piston is solved by the Broyden method. The hydrodynamic lubrication equation is solved by the finite difference method. The asperity contact between piston skirt and cylinder liner is calculated by the Greenwood model. The flow of lubricating oil is analyzed based on the theory of fluid mechanics. The results indicate that, when the actual transport of lubricating oil is considered to determine the lubrication condition of piston skirt–cylinder liner friction pair, the secondary motion of piston is remarkably different from that in which the flooded lubrication is assumed in an engine operating cycle. Therefore, it is helpful to improve the accuracy and make the analysis closer to the actual engine operating situation that the transport of lubricating oil is considered in the analysis of the secondary motion of engine piston.</div>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call