Abstract

Concrete prepared using Gobi sand and gravel instead of ordinary sand and gravel is referred to as Gobi concrete. In order to explore the effect of fibers on the frost resistance of Gobi concrete, as well as to enhance the service life of Gobi aggregate concrete in Northwest China, experiments were conducted with fiber types (polypropylene fibers, basalt fibers, polypropylene-basalt fibers) and fiber volume fractions (0%, 0.1%, 0.2%, 0.3%) as variable parameters. This study investigated the surface morphology, mass loss rate, and relative dynamic elastic modulus of fiber-reinforced Gobi concrete after different freeze-thaw cycles (0, 25, 50, 75, 100). Corresponding frost damage deterioration models were proposed. The results indicate that fibers have a favorable effect on the anti-peeling performance, mass loss rate, and dynamic elastic modulus of Gobi aggregate concrete. The improvement levels of different fiber types are in the following order: 0.1% basalt-polypropylene fibers, 0.2% polypropylene fibers, and 0.3% basalt fibers. Compared to Gobi concrete exposed to natural environmental conditions, the freeze-thaw cycle numbers increased by 343, 79, and 69 times, respectively. A quadratic polynomial damage model for fiber-reinforced Gobi concrete, using relative dynamic elastic modulus as the damage variable, was established and demonstrated good predictive performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call