Abstract

Fatigue damage caused by cyclic loading is a major concern in engineering applications. Cracks propagated by cyclic loading can lead to catastrophic failure, which can have severe consequences in safety-critical systems. The main objective of the paper is to investigate the residual strength of cracked plate considering fatigue crack propagation under cyclic loading. In this study, a cracked plate model is proposed to study the difference of compressive and tensile residual strength with pre-crack and fatigue crack. The influence factors such as crack length, number of cycles, tensile/compressive cyclic loads, and out-of-plane deformation are considered in the residual strength study of cracked plate. The numerical results can gain insight into the effect of crack propagation on the structural residual strength, with the aim of providing guidance for evaluating the residual strength of cracked components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.