Abstract

In this paper, we propose a new kind of optomechanical metamaterial based on a planar ELC-type absorbing structure fabricated on the low-loss flexible substrate. The nonlinear coupling mechanism and nonlinear response phenomenon of the proposed optomechanical metamaterial driven by electromagnetic induced force are analyzed theoretically. The mechanical deformation/displacement and the mechanical resonance frequency shift of the metamaterial unit deposed on the flexible substrate are also numerically and experimentally demonstrated to reveal the coupling phenomenon of electromagnetic field and mechanical field. These results will help researchers to further understand the multi-physics interactions of optomechanical metamaterials and will promote the developments of new type of metasurface for high-efficiency dynamic electromagnetic wave controlling and formatting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call