Abstract

Uranium-containing silica gel (UCSG) is a secondary waste generated during the advanced treatment of nuclear wastewater. In order to reduce the growing storage pressure for UCSG, from the perspective of building a borosilicate glass network, UCSG was used to replace SiO2 in the glass-cured formula to directly achieve the immobilization of UCSG. SEM-EDS results showed that uranium was uniformly distributed in the matrix, and the maximum solid solubility of UCSG (two components: silica gel and uranyl ions) in the formula was as high as 55 wt %. At the same time, TG-MS proved that silica gel lost OH groups (down about 4.61 wt %) and formed Si-O-Si bond by condensation. FT-IR and XPS proved a change in the number of Si-O-Si bond, and new Si-O-B and Si-O-Al bond appeared on the spectrum. This was evidence that silica gel could self-involved participate in the construction of glass networks. EPR analysis obtained the changes in the coordination environment of U atom, the U atom decreased spin electrons number in the glass than in uranyl crystals. The glass also has good physical properties (hardness: 6.51 ± 0.23 GPa; density: 2.3977 ± 0.0056 g/cm3) and chemical durability (normalized leaching rate: LRU = 2.34 × 10-4 ± 2.05 × 10-6 g·m2·days-1 after 42 days), this research provided tactics for simple treatment of uranium-containing silica gel in one step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call