Abstract
To solve the problem of rail crack propagation, inadequate studies mainly use a two-dimensional (2D) model for macroscopic crack analysis owing to the failure of accurately reflecting the contact status between the wheel and rail. In this work, we use ANSYS software to establish a three-dimensional (3D) wheel–rail contact model to clarify the microcracks on the rail tread. The influence of the number of horizontal and vertical cyclic loads during the rail’s fatigue crack growth is analyzed. The results suggest that as the number of vertical and tangential cyclic loads increases, the length of the rail crack increases. Using experiments to verify the law between the number of cyclic loads and rail crack growth length, the experimental findings proved that the law of crack growth is basically consistent with the aforementioned simulation results and the outcome of the Paris expansion curve, verifying the validity of the simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.