Abstract

This article deals with the knapsack problem, where, under real-world conditions, the wholesale prices for the day are not known, and the sales of vegetable products exhibit seasonal patterns. Therefore, this article utilizes an LSTM neural network model to predict the daily wholesale prices. Subsequently, the top 60 projects with the highest profits are selected to create a histogram, and available projects are chosen from these 60.Initially, this article identifies five factors that impact profit and transforms them into positive indicators. Weight allocation is done using the entropy weight method and fuzzy comprehensive evaluation method. The TOPSIS method is employed to obtain composite score indicators for the 60 projects. A linear programming objective function is established, and the results are solved using the Grey Wolf Optimization (GWO) algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.