Abstract

A one-degree-of-freedom set-up driven by pneumatic muscles was designed and built in order to research the applicability of pneumatic artificial muscles in industrial applications, especially in wearable robots such as exoskeletons. The experimental set-up is very non-linear and very difficult to control properly. As a reference, an enhanced PID controller was designed. At the same time, a robust controller H ∞ and a sliding-mode controller based on an observer were designed and implemented. After that, a new position controller based on an internal pressure loop for each pneumatic muscle was tuned up. Firstly, this paper presents the experimental set-up and the system's linear models. After that, it summarizes the enhanced PID controller, H ∞ controller and the sliding-mode controller that have been designed. Then, it focuses on the position controller based on the internal pressure loops. Finally, the controllers are compared by means of experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.