Abstract

In order to precisely reproduce the precise seeding process of the population in the air-suction seed-metering device, it is necessary to execute accurate modeling of seed particles using the bonded-particle model, in combination with the discrete element method (DEM) and computational fluid dynamics (CFD). Through the repose angle, slope screening, rotating container, and particle sedimentation experiments, in this paper, the influence of the filling accuracy of the bonded-particle model on the flow behavior and mixing characteristics of the seed population was first explored based on EDEM software. The viability of the suggested modeling approach for pelleted vegetable seeds, as described in this study, was confirmed by comparing experimental and simulation outcomes. The surface roughness values obtained from the studies above were utilized to assess the accuracy of the bonded-particle model in filling. Additionally, a mathematical technique for determining the surface roughness was provided. Furthermore, an analysis of the multiple contacts in the bonded-particle model was also performed. The results indicated that the simulation results closely matched the experimental data when the number of sub-spheres in the bonded-particle model was equal to or more than 70, as measured by the standard deviation. In addition, the most optimal modeling scheme for the pelletized vegetable seed bonded-particles, based on the cost of coupling simulation, was found to be the bonded-particle surface roughness (BS) with a value of 0.1. Ultimately, a practical example was utilized to demonstrate the utilization of the pelleted vegetable seed bonded-particle model and the DEM-CFD coupling approach in analyzing the accuracy of the seeding process in the air-suction seed-metering device. This example will serve as a valuable reference point for future field studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.