Abstract

Taking the bending stiffness, cable static sag and cable inclined angle into consideration, equations of space free vibration of the cable-damper system are derived in this paper. Joining the variable separation strategy and center difference method, the partial differential equations are discretized in space and a set of complex eigenvalue equations, which are solved by state space method, are derived, and both the maximum modal damping ration and the optimal damper parameter are obtained. Several typical stay cables are investigated for both the in-plane and out-of-plane modes under different cable parameters and damper parameters. The results demonstrate that modal damping ratio for the first in-plane mode is significantly affected by the cable static sag only, but those for the other modes affected by cable sag are slight, and cable static sag do not affect the optimal damper parameter for all modes, however the bending stiffness will changes both the maximum modal damping ratios and the optimal damper parameters. Some valuable suggestions are proposed for the optimal damper design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.