Abstract

Abstract The present work is focused on the development of microstructure of Ti-7Cu alloy as a function of forging temperature and forging ratio in semi-solid state and the influence of resulting microstructure on the mechanical properties. The experimental results showed that the dynamic recrystallization occurred during semi-solid forging and the grain refinement was attained which is considered to be favorable for improving the semi-solid formability. The grain size increased with forging temperature and decreased with forging ratio. Forging temperature has a significant effect on the precipitation behavior in grain boundary regions during the semi-solid processing. More acicular-Ti2Cu tended to precipitate in grain boundary regions with higher forging temperature and finally formed precipitates zones adjacent to grain boundaries after forged at 1,100°C. High ultimate tensile strengths and low elongation have been achieved after semi-solid forging. The strength and hardness decreased with increase of forging temperature, while the ductility increased with increase of forging ratio. The relative contributions of tensile properties were attributed to the varieties of grain size and the distribution of Ti2Cu precipitates obtained by semi-solid forging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.