Abstract

A novel Si/P flame retardant was prepared using tetraethyl orthosilicate (TEOS) and phosphoric acid (H3PO4). Cotton fabric treated with the flame retardant was characterized by cone calorimetry, thermogravimetric analysis (TGA), X-ray fluorescence spectroscopy, and Fourier transform infrared spectroscopy. The peak heat release rate (pHRR) and total heat release (THR) of the fabric treated with TEOS/H3PO4 are lower than those of the fabric treated with TEOS or H3PO4 alone. The HRR and THR of the treated fabric decrease from 145.66 kW/m2 and 1.68 MJ/m2 to 70.76 kW/m2 and 0.67 MJ/m2, respectively. Total smoke production decreases from 0.080 to 0.014 m2/m2. TGA revealed that cellulose dehydration increases at low temperatures because of the addition of phosphoric acid and the production of charcoal. The generated charcoal is dense. The P and Si contents markedly increase, and exist in the charcoal in the form of P-O-C and Si-O bonds, respectively. On the basis of these results, we conclude that the main mechanism of TEOS/H3PO4 is that of a condensed-phase flame retardant. Good flame retardant synergism occurs between TEOS and H3PO4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.