Abstract

Ultrasound-based shear wave elastography (SWE) can non-invasively assess prostate tissue stiffness for the diagnosis of prostate cancer (PCa). So far, there is no widely recognized standard for the detection process and calculation method of Young’s modulus value in transrectal SWE ultrasound imaging (TSWEUI). In our study, the mean maximum Young’s modulus value (m-Emax) of the maximum cross-section of prostate is obtained by calculating the mean of 12 measured Emax in the four quadrants. This retrospective study included 209 suspected malignant prostate disease patients with pathological results in our hospital. Among the 209 patients, 75 patients completed TSWEUI, and 63 of the 75 patients completed magnetic resonance imaging (MRI). The area under the receiver operating characteristic (ROC) curve (AUC) of 75 patients for m-Emax was 0.754. The prostate volume, prostate-specific antigen, and m-Emax were used to develop a nomogram (AUC = 0.868). The nomogram could effectively predict the probability of PCa, thereby reducing the needle biopsy rate for diagnosing PCa. The AUC of 63 patients was not statistically different between m-Emax (AUC = 0.717) and MRI (AUC = 0.787) (P = 0.361). These indicate that m-Emax can be used as an innovative parameter in TSWEUI to diagnosis PCa. TSWEUI is more cost-effective than MRI in diagnosing PCa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.