Abstract

A new magneto-optic current sensor with a dual-orthogonal configuration is proposed and demonstrated, which can resolve the problem which value of high-current pulses is ambiguous from the Faraday rotation in the conventional magneto-optic current sensor. In this dual-orthogonal configuration, the transmission axis of the polarizer makes two given angles, which are 0 degrees and 45 degrees , with the orientation of the s-polarized lights of two polarizing cube beam splitters. If the intrinsic linear birefringence of the sensing element is one-fourth less than the Faraday rotation generated from the high-current pulse, the measurement current influenced by it can be ignored and four outputs of the magneto-optic current sensor are in quadrature. The value of the current pulse can be calculated by an arctangent data reduction method, which can avoid the insensitive zone of the sine function, where the measurement current has a reduced accuracy. A measurement of the high-current pulse (up to 720 kA) of an electric gun, with good theoretical accuracy ( approximately 3%) and in agreement well with that of the calibrated Rogowski coil, is launched.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.