Abstract

Accurate surge pressure prediction during tripping is significant to ensure drilling safety. Based on the theory of wellbore hydraulics and heat transfer, a surge pressure prediction model considering the influence of HTHP and joints is established in this paper. The finite difference method is used to solve the wellbore flow model. Compared with the measured surge pressure, it was found that the error between the predicted and measured values after considering the above factors was only 0.89%. The influence of dimensionless joint outer diameter, joint length and drill string tripping speed on the surge pressure was further analyzed. The results show that the existence of joints increases the surge pressure. When the dimensionless joint outer diameter was increased from 0.70 to 0.91, the surge pressure increased by 76%. Neglecting the effect of the joint will cause a large error in calculating the surge pressure. In addition, the surge pressure is positively correlated with the drill string tripping speed. However, with the decrease in drill string tripping speed, the surge pressure will gradually tend to a stable value. This study provides a theoretical reference for the hydraulic design of HTHP well tripping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call