Abstract

Solar energy has huge potential and offers a solution to fulfill the demand for energy and reduce fossil fuel emissions. An effort had been made for assessing the effects of dust accumulation and ambient temperature on module conversion efficiency of 62 KWp grid connected rooftop solar plant. The performance parameters including open-circuit voltage, maximum voltage, short-circuit current, maximum current, etc. were collected and permitting for usual dust addition. These statistics were used for the estimation of the performance ratio (PR), capacity utilization factor (CUF), and power conversion efficiency. This work assesses the decrease in conversion efficiency of cell as a function of dust addition and ambient temperature. A multivariate linear regressions (MLR) model can forecast conversion efficiency closely, with R2 values close to 91%. It was employed in computing decrease in efficiency due to dust addition only. Result shows that the normal efficiency drops due to dust are 0.872%/day, energy harms are 9.935 kWh/m2 and Rs. 192.72 or 2.5 dollar per day by the MLR model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call