Abstract

Shock waves, which derive from explosions, generate reflected and refracted waves when propagating in the layered medium with various acoustic stiffness. Depending on the acoustic characteristic of each layer of the medium, properties of reflected and refracted waves will increase or decrease pressures/stresses at the investigated point of medium, compared to influences of explosive shock waves (incident waves) propagated in a homogeneous and isotropic medium. Based on this mechanical physical property, scientists have studied a diversity of solutions decreasing effects of explosive shock waves in various medium such as rock and soil, water, air. However, currently there have not been any comprehensive theoretical studies on the reduction in intensity of the underwater explosion shock wave when interacting with bubble curtain. By using the analytical method and the virtual explosive method, the paper presents the propagation rule of new waves formed when the underwater explosion shock wave interacts with the bubble curtain. The results showed that the more the thickness of the bubble curtain or the higher the bubble content or the longer the distance from the explosive to the curtain, the weaker the intensity of the shock wave when passing through the curtain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call