Abstract

The goal of this experimental research program is to increase the understanding, at a microscopic level, of hydrogenation processes and passivation mechanisms for crystalline-Si photovoltaics. In our experiments, vibrational spectroscopy was used to study the properties of the interstitial H2 molecule in Si and the transition-metal-hydrogen complexes in Si. The interstitial H2 molecule is formed readily in Si when hydrogen is introduced. Our studies establish that interstitial H2 in Si behaves as a nearly free rotator, solving puzzles about the behavior of this defect that have persisted since the discovery of its vibrational spectrum. The transition metals are common impurities in Si that decrease the minority-carrier lifetime and degrade the efficiencies of solar cells. Therefore, the possibility that transition-metal impurities in Si might be passivated by hydrogen has long been of interest. Our studies of transition-metal-H complexes in Si help to establish the structural and electrical properties of a family of Pt-H complexes in Si, and have made the Pt-H complexes a model system for understanding the interaction of hydrogen with transition-metal impurities in Si.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.