Abstract
The hybrid models of granular computing and support vector machine are a kind of new machine learning algorithms based on granular computing and statistical learning theory. These hybrid models can effectively use the advantage of each algorithm, so that their performance are better than a single method. In view of their excellent learning performance, the hybrid models of granular computing and support vector machine have become one of the focus at home and abroad. In this paper, the research on the hybrid models are reviewed, which include fuzzy support vector machine, rough support vector machine, quotient space support vector machine, rough fuzzy support vector machine and fuzzy rough support vector machine. Firstly, we briefly introduce the typical granular computing models and the basic theory of support vector machines. Secondly, we describe the latest progress of these hybrid models in recent years. Finally, we point out the research and development prospects of the hybrid algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.