Abstract
In order to study the correlation mechanism between the flow characteristics and the fluid-induced force under the compound whirl motion in the centrifugal pump, the RNG k-ε model is selected in this paper to simulate a low specific speed centrifugal pump with impeller eccentricity based on the N-S equation. The changes of fluid-induced force with impeller eccentricity and the unsteady flow characteristics of the internal flow field of centrifugal pump under different flow conditions and rotation speeds are investigated, and the relationship between the fluid-induced force of the impeller and the internal flow field characteristics is discussed. The results show that the trend of fluid-induced force and the pressure coefficient is similar. When the rotation speed changes and when the flow is similar, the pressure coefficient under different rotation speeds almost coincides. With the increase of impeller speed and impeller eccentricity, the dynamic and static interferences between the impeller and the volute tongue are more significant, the uneven distribution of the pressure around the impeller makes the internal flow of centrifugal pump more disordered and increases the fluid-induced force near the volute tongue. The research results can provide important reference value for accurately grasping the internal flow excitation principle of the centrifugal pump.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Facta Universitatis, Series: Mechanical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.