Abstract

The coupling stirring effect driven by top blown supersonic jets and bottom blown jets plays a crucial role in converter bath movement. Based on numerical simulation, jet-bath interactions inside a 110-ton commercial converter at room temperature and at steelmaking temperature were compared. Penetration depth and flow velocity in molten bath are larger at steelmaking temperature because the velocity attenuation of supersonic jet is suppressed. The mathematical model was then used to investigate the effect of radial angle between oxygen lance nozzles and bottom blowing tuyeres on molten bath flow properties, which revealed the fluid flow mechanism in combined blown converter. Based on the molten bath flow field, mathematical model describing the erosion behavior of converter lining was established and erosion characteristics in combined blown converter was researched. The results showed that radial angle between oxygen lance nozzles and bottom blowing tuyeres has an important influence on converter bath velocity field distribution and lining erosion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call