Abstract

In order to obtain the effect of endwall secondary flow on the swirling film cooling, a geometric model of cascade is established to research the endwall swirling film cooling and swirling flow induced by prismatic jet impingement configurations. Numerical simulation is applied to investigate three jet flow configurations on the endwall film cooling performance at the compound angles of film hole γ = 0° and 30° and blowing ratios M = 0.5–2.0. The influence of complex vortex structures near endwall for jet flow is analyzed in detail; the strong transverse cross flow near the endwall is the main reason affecting the film cooling effectiveness. The variation laws of endwall film cooling effectiveness with the compound angle of film hole, jet flow configuration, and the blowing ratio are obtained. As the blowing ratio increases, the spanwise average film cooling effectiveness increases first and then decreases. While the blowing ratio is M =1.0, the endwall film cooling effectiveness is the best. Increasing the compound angle of the film hole leads to a decrease in the endwall cooling effectiveness. The spanwise average cooling effectiveness of γ = 30° decreases by 35% compared to the γ = 0°.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.