Abstract
Under the background of the “strong direct current and weak alternating current” large power grid, the synchronous condenser with dynamic reactive power support capability becomes more important. Due to factors such as manufacturing, installation, and changes in operating conditions, there are many faults associated with the synchronous condenser. This paper studies a fault diagnosis method based on multi-scale zooming learning framework. First, through the energy fully connected (energy FC) layer, the synchronous condenser feature components of the fault signal of the camera are learned, and the transient features of the signal are enhanced. At the same time, the data is adaptively compressed and the effective features are mapped in a distributed manner. The faults are effectively diagnosed and isolated in advance. Secondly, a multi-scale learning framework is constructed to learn the multi-frequency features in the vibration signal. Finally, experiments show that the proposed method has certain advantages over the existing excellent models. The accuracy rate of diagnosis is higher than 99%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.