Abstract

By using an electrohydraulic servo fatigue testing machine, fatigue tests were performed on C60 high strength concrete (HSC) under low cyclic compressive loading after undergoing normal temperature, 200°C, 400°C, 600°C, and 800°C. Failure patterns of high strength concrete under low cyclic compressive loading were observed. The influence of the high temperature process on the static elastic modulus of high strength concrete was analyzed. By studying the development law of fatigue strain, regression equations of fatigue strain after different high temperatures were established. Furthermore, the fatigue deformation modulus ratio was defined as the damage variable and the relationship models between the high temperature process and the fatigue damage were established. It provides the experimental foundation for fatigue damage analysis of high strength concrete in objective working conditions, which includes repeated loading and different high temperature processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.