Abstract

Due to their potential to expand the photon energy harvesting zones and improve charge separation, two semiconductors together have been shown to be a promising technique to increase the photocatalytic activity of photocatalysts. Through the use of monomeric porphyrin molecules and g-C3N4 nanomaterials, self-assembly of the hybird g-C3N4@porrphyrin nanorod materials under CTAB surfactant-assited conditions was demonstrated in this study. SEM, EDS, FTIR, and UV-vis were used to characterize the generated hybrid material. Under simulated sunlight irradiation, the hybrid mateial’s photocatalytic behaviour was examined for the photoreduction of Cr6+ ions. After 100 minutes of reaction time under the simulated solar spectrum, the results showed that the hybrid material demonstrated high photocatalytic performance against, with clearance percentage of almost 100%. The prepared photocatalyst was also highly stable with the reduction of Cr6+ removal efficiency of less than 10% after 4 cycles of photocatalytic testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.