Abstract

ABSTRACT The efficient utilization of wood waste is important for protecting the environment and solving the energy shortage problem. Taking Fraxinus mandshurica (FM) as an example, polyoxometalate (POM) was used as a catalyst for cyclic redox in an H-type electrolytic cell, where wood was oxidized to valuable small-molecule chemicals at the anode and hydrogen was generated at the cathode. The system successfully recycles energy, simultaneously converting biomass to chemical and electrical to hydrogen. Furthermore, the effects of various factors on the reaction were also investigated to obtain the optimal electrochemical conversion results for wood waste. At the optimal conditions, the FM degradation rate of 56.1%, with aromatic organic and carbonyl compounds as the main products, and the average Faraday efficiency of hydrogen generation can reach 93%, saving about 40% of energy consumption compared to water electrolysis at 0.1 A cm−2. Therefore, this electrochemical conversion method provides a new potential pathway for the application of wood waste.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call