Abstract
Ride safety of a tracked vehicle is the key focus of this research. The factors that affect the ride safety of a vehicle are analyzed and evaluation parameters with their criteria are proposed. A multibody cosimulation approach is used to investigate the effects of hydropneumatic parameters on the ride safety and aid with design optimization and tuning of the suspension system. Based on the cosimulation environment, the vehicle multibody dynamics (MBD) model and the road model are developed using RecurDyn, which is linked to the hydropneumatic suspension model developed in Lab AMESim. Test verification of a single suspension unit is accomplished and the suspension parameters are implemented within the hydropneumatic model. Virtual tests on a G class road at different speeds are conducted. Effects of the accumulator charge pressure, damping diameter, and the track tensioning pressure on the ride safety are analyzed and quantified. This research shows that low accumulator charge pressure, improper damping diameter, and insufficient track tensioning pressure will deteriorate the ride safety. The results provide useful references for the optimal design and control of the parameters of a hydropneumatic suspension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.