Abstract

As the demand for high-performance battery technology increases, the new energy vehicle industry has an urgent need for safer and more efficient battery systems. A model combining five side reactions was developed to be applied to the studies related to this paper. In this paper, the thermal runaway triggering process of Li-ion batteries is simulated, and the relationship between the local heating of the cathode collector surface and the change of the high-temperature area distribution of the diaphragm layer is analyzed. The thermal runaway mechanism is further revealed. Based on the simulation results, the following conclusions can be drawn: phosphonitene compounds can delay the decomposition of the solid electrolyte interphase membrane and reduce the energy yield of battery-side reactions. Compared with the phosphonitene compound, the optimized structure of adding phosphonitene has little effect on the thermal stability of the battery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.