Abstract

With increasing antibiotic resistance and drug safety concerns, novel therapeutics are urgently needed. Antimicrobial peptides are promising candidates that could address the spread of multidrug-resistant pathogens. HPRP-A1/A2 are known to display antimicrobial activity against gram-negative bacteria, gram-positive bacteria and some pathogenic fungi, but whether HPRP-A1/A2 work on Toxoplasma gondii (Tgondii) is unknown. In this study, we found that the viability of tachyzoites that received HPRP-A1/A2 treatment was significantly decreased, and there was a reduction in the adhesion to and invasion of macrophages by tachyzoites after HPRP-A1/A2 treatment. HPRP-A1/A2 damaged the integrity of tachyzoite membranes, as characterized by membrane disorganization in and cytoplasm outflow from tachyzoites. In addition, in vivo injection with HPRP-A1/A2 resulted in a significantly decreased number of tachyzoites and an accelerated Th1/Tc1 response, and elicited pro-inflammatory cytokines in Tgondii-infected mice. Furthermore, HPRP-A1/A2-treated splenocytes exhibited a significantly increased Tc1/Th1 response, and HPRP-A1/A2-stimulated macrophages inhibited the growth of carboxyfluorescein succinimidyl amino ester (CFSE)-labelled tachyzoites, which had higher TNF-α/IL-12 mRNA levels. Altogether, these results imply that HPRP-A1/A2 are effective against Tgondii through damaging the structure of tachyzoites and inducing a protective immune response, which could offer an alternative approach against Tgondii infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.