Abstract
Under the action of various dynamic loads, bridges will experience large deflections and stress. When the situation is difficult, it will affect the regular use of the bridge and even cause it to collapse suddenly. This article generated a sample of road surface irregularities based on the Chinese national standard. An ANSYS model was used to create the vehicle–bridge coupling model. In order to meet the actual engineering calculations, an essential but valuable analytical approach is presented here. The node coupling method established the time-varying vehicle axle coupling system. The moving tire force was applied to the axle coupling system. The ANSYS parametric design language was adopted to realize the process of the vehicle approach and exit of the bridge. Combined with the actual data of dynamic and static load experiments, the model’s accuracy was verified. The influence of different vehicle driving speeds, road irregularities, vehicle driving position, and vehicle driving state are analyzed in this paper. The vehicle speed had no significant influence on the displacement time-history and the force of the middle wheel of the vehicle at a specific driving position. The pavement grade significantly influenced the bridge’s displacement time-history and acceleration spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.