Abstract
Road safety is important for the rapid development of the economy and society. Thus, it is of great significance to monitor the dynamic changing processes of road diseases, such as cavities, to provide a basis for the daily maintenance of roads and prevent any possible car accidents. The ground penetrating radar (GPR) technology is widely used in road disease detection due to its advantages of nondestructiveness, rapidness, and high resolution. Traditionally, one-time 2D GPR detection cannot obtain the 3D spatial changes of subgrades. Thus, we developed a road subgrade monitoring method based on the time-lapse full-coverage (TLFC) 3D GPR technique by focusing on solving the key problems of time and spatial position mismatches in experimental data. Moreover, we used the time zero consistency correction, 3D data combination, and spatial position matching methods, as they greatly improve the 3D imaging quality of underground spaces. Finally, the time-lapse attribute analysis method was used in the TLFC 3D GPR data to obtain detailed characteristics and an overall rule of the dynamic subgrade change. Overall, this research proves that TLFC 3D GPR is an optimal choice for road subgrade monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.