Abstract
Determining the weak parts of a structure is one of the key issues in the field of machine tool stiffness improvement. However, studies show that overcoming the static deformation with acquisition difficulty is a complex problem in practical structures. This study considers the machine tool cantilever structure, as a cantilever beam and bar structure, where the objective is to propose a weakness index, to identify the weak part, using system reconstruction to extract the measured static deformation data and the fitting data. Stiffness reduction is used to simulate weak parts, while the effectiveness of the method is evaluated, in the case of various weakness values and of different noise levels, using the finite element simulation approach. The validity of the proposed method is illustrated through comparison of the theoretical results to the experimental ones, using the cantilever structure of a test machine tool. The research content provides some means of improving the machining accuracy of machine tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.