Abstract
The International Thermonuclear Experimental Reactor remote-handling (ITER-RH) system powered by water hydraulics is a vision of the future. The 2D servo valve is a new type of servo valve, maybe suitable for the ITER-RH system. It has many advantages, including its fast response and strong anti-pollution ability. However, steady flow force is currently considered to be one factor that impacts the dynamic characteristics of servo valves. In this study, the influence of steady flow force on the dynamic characteristics was analyzed, and the structure was optimized accordingly. A mathematical model of the servo valve was built using theoretical analysis and numerical simulation. Results indicated that the amplitude bandwidth of the 2D water hydraulic servo valve was 169 Hz without considering the steady flow force, and it decreased to 162 Hz when the steady flow force was considered. Furthermore, a newly designed valve sleeve, to compensate for the axial steady flow force, was proposed by changing the angle of the inlet port designed in the valve sleeve to the spool axis. The maximum compensation capacity of the axial steady flow force was 35%, and the best angle of the inclined holes was approximately 120°. The optimized amplitude bandwidth of the 2D servo valve was 167 Hz. The results demonstrate that the optimized valve sleeve improved the dynamic response of the 2D servo valve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.