Abstract

As the prevalence of electric vehicles (EVs) continues to grow, their charging and discharging behaviors pose a challenge to the stable operation of power systems. Therefore, this paper analyzes the charging demand of EV users through GPS trajectory data and proposes an EV-discharging-optimization model based on vehicle-to-grid interaction (V2G). Firstly, the spatial–temporal distribution of EV-charging demand is obtained by cleaning and mining the big data of traveling vehicles, considering dynamic energy consumption theory and users’ willingness; secondly, a probabilistic model of EV users’ participation in V2G-demand response is constructed based on expected utility theory, which both considers the heterogeneity of users and reflects the interactive influence of users’ decisions; finally, a scheduling model of EV discharging in the regional grid is established. The results show that the proposed model can explore the potential of user participation in V2G in the study area, and the V2G response resources can reduce the grid fluctuation and enable users to obtain certain benefits, which achieves a win–win situation between the grid side and the user side.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call