Abstract

Water tree is the predominant defect in high-voltage crosslinked polyethylene cables. The microscopic mechanism in the discharge process is not fully understood; hence, a drawback is created towards an effective method to evaluate the insulation status. In order to investigate the growth of water tree, a plasma-chemical model is developed. The dynamic characteristics of the discharge process including voltage waveform, current waveform, electron density, electric potential, and electric field intensity are analyzed. Our results show that the distorted electric field is the predominant contributing factor of electron avalanche formation, which inevitably leads to the formation of pulse current. In addition, it is found that characteristic parameters such as the pulse width and pulse number have a great relevance to the length of water tree. Accordingly, the growth of water tree can be divided into the initial stage, development stage, and pre-breakdown stage, which provides a reference for evaluating the deteriorated stages of crosslinked polyethylene cables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call