Abstract

Water inrush happens occasionally during deeper roadways excavation. It is mainly due to the lack of understanding in the formation and development mechanism of cracks and its spatial distribution pattern under ground stress. In view of this, this paper used different stress levels to represent the fracture state of different parts of the surrounding rock of the deep roadway; CT detection technique is used to scan the fractured sandstone in the postpeak state; and the CT images under different confining pressures are thus obtained. The geometrical parameters such as area, length, and width of the crack are used to describe the distribution patterns based on CT images processing technique and statistical principle. These patterns are then analyzed under varying postpeak stress levels and confining pressures. The result shows that, as the area, length, and width of the cracks get larger, number of cracks increases with decreasing stress level; at different stress levels, sandstone crack area probability density, crack length probability density, and crack width probability density form exceptional, linear, and Gaussian distribution, respectively. The amount of confining pressure affects the size of cracks and the extent of expansion. This means that the higher the confining pressure is, the easier the internal crack will be penetrated and expanded and the bigger the cracks are, and the number of cracks gets lesser. Such research results can be used to describe the propagation and evolution law of cracks under different stress states of postpeak rock, which also provide an important basis for further analysis of its permeability and the stability of roadway surrounding rock.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.