Abstract

Cutting heat and cutting vibration are important basic research topics in the field of machining. Many factors affect cutting heat and cutting vibration, and cutting heat and cutting vibration also affect each other. This paper mainly studied the coupling characteristics between cutting vibration and cutting heat from the perspective of energy power density. A measurement system was built to collect the time-domain signals of cutting temperature and three-dimensional cutting vibration. Through Stefan–Boltzmann's law, the cutting thermal power density represented by the cutting temperature was obtained. Frequency domain analysis dealing with the self-power spectrum density was carried out on the three-dimensional vibration acceleration, and the operation of reducing the vibration dimension was carried out by principal component analysis. Based on the particle swarm optimization algorithm, two coupling models between cutting heat and cutting vibration were established. The research showed that the coupling correlation coefficient between cutting heat and cutting vibration was above 0.6. The coupling characteristics of cutting heat and cutting vibration were strong, and the impact of cutting vibration on cutting heat was more significant. The conclusions provide theoretical guidance for studying the coupling characteristics of cutting heat and cutting vibration from the energy perspective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.