Abstract

This research addresses the issues of weak anti-disturbance ability, fast response, and incompatibility of overshoot in the control process of brushless DC motors (BLDCs). A six-step commutation control method based on second-order active disturbance rejection control (ADRC) is derived following the analysis of the BLDC model and the mathematical model of ADRC. A control model of the BLDC using both PI and ADRC is constructed. Detailed comparative and quantitative analyses of the simulation results using PI and ADRC are conducted, focusing on the anti-load disturbance capabilities using the integrated square error (ISE), integrated time square error (ITSE), integrated absolute error (IAE), and integrated time absolute error (ITAE). Experimental testing on the STM32F4 controller is also carried out, analyzing four error integral criteria in depth. The results indicate that both the ADRC and PI control modes can track the target signal without overshooting, demonstrating strong anti-load disturbance ability and robustness at varying working speeds. In the BLDC control system, using the ADRC control method can achieve fast and non-overshoot tracking of target signals compared to the PI control method, and ADRC has stronger resistance to load disturbances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call