Abstract

In this study, we discover the parallelism of the forward/backward substitutions (FBS) for two cases and thus propose an efficient preconditioned conjugate gradient algorithm with the modified incomplete Cholesky preconditioner on the GPU (GPUMICPCGA). For our proposed GPUMICPCGA, the following are distinct characteristics: (1) the vector operations are optimized by grouping several vector operations into single kernels, (2) a new kernel of inner product and a new kernel of the sparse matrix–vector multiplication with high optimization are presented, and (3) an efficient parallel implementation of FBS on the GPU (GPUFBS) for two cases are suggested. Numerical results show that our proposed kernels outperform the corresponding ones presented in CUBLAS or CUSPARSE, and GPUFBS is almost 3 times faster than the implementation of FBS using the CUSPARSE library. Furthermore, GPUMICPCGA has better behavior than its counterpart implemented by the CUBLAS and CUSPARSE libraries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.