Abstract

Water, energy, and food are essential and strategic resources for human well-being and socio-economic development and form the water-energy-food (WEF) system with competition and synergy. The competitive and synergistic evolution model was developed to remedy the limitations in quantitatively analyzing the tradeoffs and synergies of the WEF system. Firstly, an assessment model was developed for measuring the synergy and competition of the WEF system based on the order degree of each subsystem (That is, the development degree of each subsystem) and synergy theory. Then the synergy evolution model (SEM), with the help of a logistic model and accelerated genetic algorithm (AGA) model, was developed to measure and identify the steady-state. Furthermore, an empirical study was conducted with 30 provinces in China as examples. The results indicated that the food subsystem had the highest average order degree (0.347), followed by the energy subsystem (0.305), and the water subsystem had the lowest (0.281). The degree of order of the three subsystems exhibited an upward trend in time and has differences in the spatial distribution. Also, the results showed that synergistic, restrictive, and competitive relationships exist within the WEF system. Areas with competitive and restrictive relationships are mainly located in South China and North China, respectively, within the relationship between the water and energy subsystems. The entire country showed a restrictive relationship between the water and food subsystems. The energy and food subsystems showed that the eastern regions with relationship, while the western regions with competitive and restrictive relationship. Finally, effective measures (e.g., optimize the industrial structure, continuing to implement the strategy of “storing grain in the land and technology”, and to hold the arable land minimum) are suggested to achieve the WEF system coordinated and sustainable development. We believe that the assessment model is also applicable to assess the other complex and dynamic system worldwide that involve multiple factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call