Abstract

Compulsators are popular choices for various high-power electromagnetic launch applications, especially for the electromagnetic railgun. A two-axis-compensated compulsator with lower internal impedance and higher power density was proposed in the authors’ previous paper. The field windings and compensating windings are allocated electrical orthogonally, providing the opportunity to design the direct-axis and quadrature-axis compensations independently. Due to the excitation function of the field windings, as well as field windings and compensating windings at the same rotor periphery, the ratio between $d$ -axis and $q$ -axis compensation is determined not only by the waveform of the air-gap flux density but also by the occupied space of windings, electromagnetic force during discharge and temperature rise and cooling condition. All these aspects mentioned above were analyzed in this paper. Furthermore, the output performance for single pulse discharge of a 2-m railgun with 100-g armature and multiple pulses discharge of a 5-m railgun with 300-g armature was simulated and compared. The results indicated that the two-axis compensation could obtain benefits by introducing more sinusoidal discharge currents for single pulse mission comparing to traditional compensation structure, whereas no obvious advantages for a flat-topped current waveform for multiple pulses mission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.