Abstract

This paper presents a new method for chatter suppression during finishing thin-walled blades. Traditionally auxiliary support is used to increase the stiffness of the structure, however, the shrink or dilate effect of the packing material, such as wax and rosin, is difficult to control, so the machining precision could not be assured. Based on the principle of stiffness optimization principle, the rigidity of the cantilever blade tip and leading/trailing edge region are improved with the non-uniform allowances distribution. The milling experiments have showed that the proposed strategy could be successfully used to realize the suppression of chatter vibration during flexible parts machining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.