Abstract

Submersible mixers are widely used in the sewage treatment process in various fields, such as agriculture and industry. They are mainly responsible for pushing flow and mixing activated sludge particles in a pool. Based on the CFD-DEM coupling method under the Euler–Lagrange framework, the solid–liquid two-phase flow of a submersible mixer was simulated in this paper, and the motion characteristics and distribution laws of particles in the pool were studied in axial, horizontal, and lateral directions, respectively. An evaluation method of distribution uniformity was proposed to analyze the velocity distribution of the flow field, the velocity distribution of particles, and the mixing uniformity of particles. The results show that the movement process of activated sludge particles in the pool can be roughly divided into three stages: the horizontal development stage, absorption–injection stage, and reflux-mixing stage, in which the reflux-mixing stage is the main stage for the uniform distribution of particles in the whole flow field. Particle accumulation occurs mainly in the dead zones of the flow field. Distribution of particles in the axial direction has the most homogeneous extent. Vortices can be generated near pool walls, causing accumulation of particles. This method can be a good guide for engineering practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.